

INSTITUT INTERNATIONAL DU FROID INTERNATIONAL INSTITUTE OF REFRIGERATION

Krypton, applied as refrigerant for cooling of silicon detector trackers

Luca Contiero & Armin Hafner & Pierre Barroca & Krzysztof Banasiak | Norwegian University of Science and Technology Bart Verlaat & Paolo Petagna | CERN

Paper 203

Summary

- Introduction
- Low-T cooling fluids in HEP (High Energy Physics)
- Hybrid cycle
- Cooling strategies & challenges
- Conclusions and further work

The LHC experiment

- High-luminosity Large Hadron Collider (HL-LHC) largest and most energetic collider in operation worldwide
- High-energy proton-proton collision might produce new heavy particles to discover
- Extremely high level of radiation \rightarrow underground application to be shielded
- Hadron-Hadron colliders tendency for colder cooling at increased power density

Why the need to keep the detector cold ?

- On the inner side of the beam pipe the particles travel and collide
- The deviation & path of the particles are recorded by producing an electrical signal on the silicon sensors
- Silicon sensors are the most delicate components
- The cooling unit aims to maintain the sensor's temperature below the critical value
- **Thermal runaway →** Sensor's temperature starts increasing excessively and the cooling unit cannot longer keep them cold

https://www.sciencedirect.com/science/article

4

Why the need of a colder coolant ?

- Power dissipation = $f(T)$
- Thermal runnaway \rightarrow the T° increases faster than the heat removal capability of the unit

Two things must be considered:

- A) High thermal conductance (low ΔT) and light weight of the structure surrounding the cooling pipe
- B) Need to go much colder to be stable

Why the need of a colder coolant than $CO₂$?

- 2PACL (two-phase oil free pumped loop)
- CO₂ triple point ≈ -56°C \rightarrow lowest possible evaporating temperature
- The current limit is \approx -45°C (\approx -50°C on the primary chiller side) \rightarrow pump subcooling
- The condensation of the returning two-phase flow is done via a primarly chiller with $CO₂$
- **New temperature domain expected to be around -50 to -80°C** → **New environmental-friendly refrigerant!**

<https://indico.cern.ch/event/957057/page/23281-the-roadmap-document>

Detector & coolant's requirements

- a) Mass minimization \rightarrow less interaction with tracking process
- b) Temperature stable over all the detector \rightarrow Thermal runaway must be avoided

The coolant shall be:

- c) No toxic and preferably no flammable (HCs)
- d) Radiation hardness \rightarrow radiation induces chemical modifications
- e) High radiation length (less interaction with the tracking process)
- g) High working pressure fluid \rightarrow by having smaller pipes point e) becomes less important
- h) Natural fluid \rightarrow meet CERN environmental policy

Low-T candidates:

- $O \times N_2O 8 N_2O + CO_2$
- o Ethane & Ethylene

7

 $\left(\frac{1}{\sqrt{1}}\right)$

- o Xenon
- o Krypton

Selection of the best natural cooling choice in HEP

In a detector cooling application the choice of the coolant is twofold:

<https://indico.cern.ch/event/233332/contributions/1546088/>

8

 $\binom{1}{\text{LIR}}$

Selection of the best natural cooling choice in HEP

Length = 2 [m] ; Q = 200 [W] ; Vapor quality change = 0- 35% ; T = -80 [°C] (standard data low-mass detector)

- Larger diameters unaccepatble for low-mass detector design
- High pressure fluids are less sensitive to pressure changes \rightarrow beneficial for stable temperature systems
- Pressure losses acceptable (for same DT) for Krypton up to 7 times those occuring with Xenon, HCs or N_2O
- Larger DP are acceptable with Krypton, resulting in higher velocities in the evaporator and thus better HTC
- **Krypton as the most promising coolant for the future in HEP**

9

 $\binom{1}{\text{LIR}}$

Challenges with Krypton cooling unit

- **Starting in gas phase** (room temperature) requires a special cycle
- Supercritical cooldown to avoid thermal shock inside the detector
- Delicate components must be cooled down slowly (1 K/min)
- Colder temperatures are required to remove heat generated by sensors & electronics

10

 $\binom{1}{\text{LIR}}$

Requirements for Krypton cooling unit

- Oil-free unit \rightarrow use of oil not contemplated in a high-irradiated area, risk of decomposition \rightarrow potential clogging of the pipes & production of corrosive compounds
- All the instrumentation must be placed faraway from the irradiated area
- No active components in the non-accessible area (for reliability)
- T-p level in the evaporator shall be controlled remotely
- For flow boiling condition, evaporation stopped in the low-quality region (≈35%) for two reasons:
	- High HTC
	- Safe operation faraway from the dry-out point

PID Hybrid cycle with Krypton

- Turbocompression stage (A-B)
- Gas cooler section (B-D)
- CGBV (C-A)
- High-pressure control (F-G)
- Concentric line (G-H-I)
- Detector (H-I)
- Liquid receiver & supercritical tank

GL 2022 | 15th IIR-Gustav Lorentzen Conference on Natural Refrigerants | June 13-15 | Trondheim, Norway **INFILIR.ORG**

 $\left(\begin{matrix} \mathbf{H} \\ \mathbf{H} \end{matrix}\right)$

- Unit's charging to the desired pressure level
- Operating at high-pressure
- Concentric line as safety against fast overcooling
- Simultaneous charging during the cooldown process to operate in the zone of nearly isothermal lines \rightarrow buffer against possible pressure's collapse

GL 2022 | 15th IIR-Gustav Lorentzen Conference on Natural Refrigerants | June 13-15 | Trondheim, Norway **INFILIR.ORG**

13

Supercritical operation

- Temperatures below -50°C via the use of an internal subcooler $+$ CO₂ gas coolers
- Fully supercritical cycle in a temperature range -50 to -60 °C
- Working too close to the critical point must be avoided (rapid change of the physical properties)

GL 2022 | 15th IIR-Gustav Lorentzen Conference on Natural Refrigerants | June 13-15 | Trondheim, Norway **INFIIR.ORG**

 $\left(\frac{1}{\sqrt{1}}\right)$

Transcritical – subcritical operation

- Evaporative cooling required during the lifetime of the detectors
- Turbocompressors must always be fed by superheated vapor
- Specific control on the heat rejection rate bewteen 2nd gas cooler - IHX
- Concentric line permits to fully liquify at the detector inlet \rightarrow avoiding maldistribution

15

 $\left(\frac{1}{\sqrt{1}}\right)$

Conclusion and further work

Aim of the study:

- Compared different natural fluids to cool the future highly irradiated detectors.
- Krypton stands out as the most performant coolant for the future particle infrustructure at CERN, presenting similar pressure level of $CO₂$ and \approx diameters.
- Propose a new hybrid cooling cycle with Krypton for the T range -60 to -80°C.
- Evaluate the transient behavior from room temperature down to the cold region.

Further work:

- Evaluate possible improvements of the cycle \rightarrow Ejector for liquid recirculation subcooled liquid before manifold inlets
- Test the thermal perfomance in the subcritical supercritical domain (HTC&DP) \rightarrow setup at CERN
- Using another medium (i.e. Xenon), prove the cooling concept of the cycle

INSTITUT INTERNATIONAL DU FROID INTERNATIONAL INSTITUTE OF REFRIGERATION

Thanks for your attention!

O NTNU

EP-DT **Detector Technologies**

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA no 101004761. Luca Contiero , PhD candidate Luca.contiero@ntnu.no

GL 2022 | 15th IIR-Gustav Lorentzen Conference on Natural Refrigerants | June 13-15 | Trondheim, Norway